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ABSTRACT

A theoretical analysis was performed on a zoned resonator t.
determine whether both resonator feedback and a focused output could
be achieved with a single optical element. It was found that under
certain conditions that well-defined modes do exist and that a focused
output couild be obtained.

This resonator was formed by two parallel mirrors (circular,
plane, and equal sized) symmetrically placed about a common axis.
One mirror had a uniform reflectivity of unity. The other mirror
was zoned. It consisted of alternately transmitting and totally
reflecting concentric zones. The reflecting zones provided the reso-
nator feedback and the transmitting zones provided the output coupling.
The transmission zones were arranged in a manner similar to the
transmission zones on a Freznel zone plate. Thus, the zoned mirror
tended to focus the field coupled out of the resonator.

For a zoned resonator in which the output mirror consisted of
alternately totally reflecting and totally transmitting zones of equal
area the following results were obtained:

1) When the focal length of the zoned mirror was less than the
resonator length, stable resonator modes were obtained and
sharp focusing of the output was achieved.

2) When the focal length was approximately equal to the
resonator length, stable resonator modes were not obtained.

3) When the focal length was greater than the resonator length,
stable modes were obtained but sharp focusing of the output
could not be achieved.

Based on these findings it was concluded that a focused output was
possible but that focusing at large distances was not feasible.

The mode structures of zoned resonators were more irregular
than the corresponding mode structures of unzoned resonators. Ik
was found that the mode structures could be made more regular by
increasing the reflectivity of the transmission zones and/or
decreasing the area of these zones. The irregularity of these fields
was more pronounced for resonators having large Fresnel numbers
than for those having small Fresnel numbers,

For reronators having small Fresnel numbers, the maximum

focused intensity was achieved when the reflectivity of the transmitting
zones was zero and the transmitting and reflecting zones were equal
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in area. However, maximum focused intensity per urit output power
was achieved when the area of the transmitting zones was reduced
and the area of the reflection zones correspondingly increased. The
optimum transmission area was about 74 percent of the area of the
half-period zones. Because their field structures are strongly
dependent on the characteristics of the zoned mirror, the optimum
values of reflectivity and area for resonators having large Fresnel
numbers are almost impossible to predict. However, optimum
values do exist, and for a given configuration they could be found.

Some of the zoned resonators analyzed had focused intensities
several times greater than the maximum intensity of the resonator
field. However, the power passing through the main lobe in the
focal plane was only about 20 percent of the total output power.
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CHAPTER1

INTRODUCTION

A theoretical analysis was performed on a zoned resonator to determine
whether both resonator feedback and a focused output could be achieved with a
single optical element. 1t was found that under certain conditions that well-
defined modes do exist and that a focused output could be achieved.

The zoned resonator was formed by two parallel mirrors symmetrically
placed about a common axis. These mirrors were circular, piane, and equal
sized. One mirror had a uniform reflectivity of unity. The other mirror was
a zoned mirror; it consisted of alternately totally reflecting and transmitting
concentric zones. The reflecting zones provided the resonator feedback and
the transmitting zones provided the output coupling. The transmission zones
were arranged in a manner similar to the transmission zones on a Fresnel
zone plate.! This zoned mirror tended to focus the portion of the field coupled
out of the resonator.

A mode of this resonator is a field configuration which satisfies

Maxwell's equations and the boundary conditions at the mirrors. However,

!Jenkins, Francis A., and Harvey E, White, Fundamentals of Optics,
McGraw-Hill Book Company, Inc., p. 360 (1957),




i ool

o i e

because of the lack of boundary conditions on the walls of the resonator,
approximations are required in order to obtain the modes of the resonator.
One of the most successful approximate methods of obtaining resonator modes-
is based on scalar diffraction theory, *7

This theory utilizes a scalar formulation of Huygen's principle to relate
the field on each mirror in terms of the field on the other mirror. Solutions
obtained represert resonator modes. These modes are field configurations
such that, except for a change in magnitude and phase, they are reproduced
after a double pass through the resonator. With each double pass the resonator
modes decrease in amplitude. This dacrease in amplitude results from trans-

mission losses through the mirrors and diffraction losses through the open side

’Fox, A. G., and Tingye Li, "Resonant Modes in a Maser Interferom-
eter" Bell System Technical Journal, Volume 40, pp. 453-488 (1961).

Boyd, G. D., and J. P. Gordon, "Confocal Multimode Resonator for
Millimeter Through Optical Wavelength Masers" Bell System Technical
Journal, Volume 40, pp. 389-508 (1961).

‘Boyd, G. D., and H. Kogelnik, "Generalized Confocal Resonator
Theory' Bell System Technical Journal, Volume 41, pp. 1347-1369 (1962) .

Fox, A. G., and Tingye Li, "Modes in a Maser Interfoermeter with
Curved and Tilted Mirrors' Proceedings of the IEEE, Volume 51, pp. 80-89
(1963).

81i, Tingye, "Diffraction Loss and Selection of Modes in Maser
Resonators with Circular Mirrors' Bell System Technical Journal, Volume 44,
pp. 917-932 (1963).

"Fox, A. Gardner, and Tingye Li, ""Computation of Optical Resonator
Modes by the Method of Resonance Excitation" IEEE Journal of Quantum Elec-
tronics, Volume QE-4, pp. 460-465 (1968).
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walls, In an active laser resonator these losses would be compensated for by
stimulated emission and steady-state oscillations could then occur.

The usual form of the scalar diffraction theory for resonators assumes
a constant resonator gain. It does not account for either saturable gain or
nomniform gain distributions, However, Statz and Tang® and Fox and L’
modified the theory so that saturable gain could be considered. They found,
that if the small signal gain were not too large, the resonator modes had
essentially the same configuration as those obtained when uniform gain was
assumed. Li and Skinner!® considered a resonator having nonuniform gain,
They also found that the resonator modes were very similar to those cbtained
for resonators having uniform gain,

It should also be mentioned that field configurations obtained from

scalar diffraction theory have been compared to experimentally determined

SStatz, H., and C. L. Tang, "Problem of Mode Deformation in Optical
Resonators" Journal of Applied Physics, Volume 36, pp. 181f~1819 (1965).

%Fox, A.G., and Tingye Li, "Efiect of Gain Saturation on the Oscil-
lating Modes of Optical Masers" IEEE Journai ~f Quantum Electronics,
Volume QE-2, pp. 774-783 (1966).

014, Tingye, and J. G. Skinner, "Oscillating Modzs in Ruby Lasers
with Nonuniform Energy Distributions' Journal of Applied Physics, Volume 36,
pPp. 2595-2596 (1965).
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modes, It was fourd that the theory quite accurately predicted the measured
mode structure, !!s 12

Thus, because of its general applicability, the scalar theory of optical
resonators was utilized in analyzing the zoned resonator, and since gain has
little effect on the resonator mode structure, a uniform gain was assumed.
Recently, this method of resonator mode analysis was used to obtain the modes
of a confocal resonator having a single output coupling aperture, !* and it has
previously been used to obtain the modes ofa Fabry-Perot resonator having
coupling apertures in both mirrors. '

This paper is divided into five main chapters. In Chapter II the basic
resonator equations are presented. Also in Chapter II the equations expressing
the output fields of the resonator are derived. In Chapter III the characteristics
of the zoned mirror are discussed. The focusing properties of the zoned mirror

and the optimization of the focused output are considered in detail. In

Chapter IV the numerical method used to solve the resonator equations is

Kogelnik, H., and W. W, Rigrod, "Visual Display of Isolated Optical-
Resonator Modes' Proceedings of the IRE, Volume 50, p. 220 (1962).

l2Rosenberger, D., "Mode Spectrum in the He-Ne Maser' Quantum
Electronics — Paris 1963 Conference, by P. Grivet and N. Bloembergen,
Volume 2, Columbia University Press, pp. 1301-1304 (1964). :

13McNice, Garner T., 2nd Vernon E. Derr, 1"Analysis of the Cylindrical
Confocal Laser Resonator Having a Single Circular Coupling Aperture" IEEE
Journal of Quantum Electronics, Volume QE-5, pp. 569-575 (1969).

M1i, Tingye, and H. Zucker, "Modes of a Fabry-Perot Laser Resonator
with Output Coupling Apertures'' Journal of the Optical Society of America,
Volume 57, pr. 984--986 (1967).

4




presented. It is basically a power method; this is the method referred to by

Fox and Li!® as the method of successive approximations. InChapter V resona-

tor mode control is discussed. In Chapter VI the results cf the analysis of the
i zoned resonator are presented.
In Chapter VII characteristics of the zoned resonator are briefly sum-

marized and conclusions presented.

T
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5Fox, A.G., and Tingye Li, "Resonant Modes ina Maser Interferom-
eter" Bell System Technical Journal, Volume 40, pp. 453-488 (1961).
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CHAPTER II

INTEGRAL FORMULATION OF THE RESONATOR PROBLEM

This chapter is divided into three sections. In the first, the integral
form of the resonator equations is presented. These equations express the
field at a point vn one mirror in terms of the integral of the field over the other
mirror. Solutions to these equations represent resonator modes.

In the second secticn an expression for the output power from the
resonator is developed. This expression is given in terms of the resonator
fields and the characteristics of the output mirror.

In the last section an expression for the fields transmitted through the
output mirror is determined. This expression is valid for the Fresnel region

of the resonator.

A. Resonator Equations

A diagram showing the pertinent geometry of the self-focusing
resonator is given in Figure 1. This resonator is formed by two circular plane
mirrors symmetrically located about the resonator axis. The mirrors have
equai radii, ap, and they are separated a distance (d}. One of the mirrors,
designated the input mirror, has a uniform reflectivity; the other mirror, the

zoned mirror, has a reflectivity that is a function of mirror radius. The polar

6
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Figure 1. Resonator Geometry

coordinates (rs, ¢s) and T, ¢z) are used to describe positions on the input
and the zoned mirrors respectively.

The modes of this resonator ¢an be described by the integral equatious
first established by Fox and Li.! They used a scalar formulation of Huygens
principle to relate the field on one mirror in terms of the integral of the field
on the other mirror. Their equations are valid for resonators whose mirror
dimensions are large compared to a wavelength and whose fields are essentially
transverse electromagnetic and plane polarized in a single direction,

The fields on the resonator mirrors can be written in the forms given

below.? On the input mirror the field is given by

'Fox, A. G. , ana Tingye Li, '"Resonant Modes in a Maser Interferom-
eter' Bell System Technical Journal, Volume 40, pp. 453-488 (1961).

’Li, Tingye, "Diffraction 1..8s and Selection of Modes in Maser Resona-
tors with Circular Mirrors' Bell System Technical Journal, Volume 44,
ppP. 917-932 (1965).
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-jme,
Emn(rs, ¢s) =R _ (rs)e , (II-1)

and on the zoned mirror the field is given by

-jme,

E__ (rz, ¢z) == (rz)e . (11-2)

The terins (m) and (n) are nonnegative integers, Rns(rs) and an (rz) represent
the radial variations of the fields, and exp (-jm¢'s) and exp (-jmcpz) represent
the azimuthal variations of the fields. The r.zimuthal field variations are
einusoidal and have a degeneracy of (m). For a given angular degeneracy, the

radial variations of the fields are related to each other by the following integral

equations:
] 2
Rns (rs) = { pzNKm(rz, rs)an \rz)rzdrz (1I-3)
and
1
an(rz) = _g psNKm (rz, rs Rns (rs)rsdrs g (I1-4)

These equations are a normalized form of the usual resonator equations. They
have been normalized with respect to the radii of the mirrors in such a way
that the mirror apertures are equal to one. In this normalization the resonator

Fresnel number was introduced. This Fresnel number is given by

N= P (11-5)
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where A is the wavelength of the fields within the resonatoy' medium. Also
included in these resonator equations are the terms pZ and ps; they represent,
the amplitude reflectivity of the zoned mirror and the input mirror respectively.
These reflectivities, expressed as a function of normalized mirror radius,
allow one to introduce the selective reflection characteristics of the zoned

mirror into the resonator equations. The term Km T rs) is given by

~ op (1 N e 2, . 2 e
Km rz,rs) = 21(j) Jm(21rerls) exp[ ]wN(rz + r, )] , (II-6)

where (j) is the imaginary number N-1", (m) is the order of the angular

degeneracy, and Jm is the Bessel function of the first kind and mth order,
The bars over the fields, inside the integrals of equations (II-3) and

(II-4), also represent a normalization. This normalization is expressed as

yns

Ens (rs) = RL(rs)_ (II-7)

and

ﬁnz(rz) = E“Yz_(rz_)_. | (1I-8)

nz
The terms e and Yz represent the values of the fields or the input and zoned
mirrors, respectively, where the magnitudes of the fields are maximum.

A resonator mode is a field distribution such that, after a double pass
through the resonator, the field reproduces itself except for a change in ampli-

tude and phase. 3 As an example, suppose that ﬁns (rs) is a resonator mode.

SFox, A. G., and Tingye Li, op._cit.




By using equations (iI-3), (II-4), (I1-7), and (II-8), one can show that the

field after a double pass thro th tor i R .
ie r p rough the resonator is given by [ynsyanns (rs)]

In mode terminology, I‘n, as given by

= -9
I‘n Yns'nz ’ (-2

represents the eigervalue of the eigenfunction ﬁns(rs)' Separately, Y o and
Yz do not have real significance; they are merely by-products of the analytical
procedure. On the other hand, I‘n has physical meaning. It represenis the
change in amplitude and phase of a resonator mode caused by a double pass in
the resonator,

Each resonator is described by a particular field distribution, and each
distribution has a distinct eigenvalue. Because of this uniqueness the double
pass power loss of a resonator mode is also unique. This loss is given by the
expression

=1 - | 2 =
Ldp IFnl 0 (II-10)

and it includes both diffraction and transmission losses. As was stated above,
the mirrors have amplitude reflectivities given by pz and Mg transmission
losses are introduced by having mirror reflectivities with amplitudes less
than unity.

It has been show. that the resonator modes are orthogonal over both
mirrors.? This suggests that any arbitrary field distribution can be decom-

posed into orthogonal modes. This is a standard technique which often

‘Fox, A. G., and Tingye Li, "Modes in a Maser Interferometer with
Curved and Tilted Mirrors' Proceedings of the IEEE, Volume 51, pp. 80-89
{1963).
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facilitates not only the mathematical treatment of the problem, but also offers
some insight into the physical processes involved. Fourier analysis is an
example where it is usuai to think of the individual coinponents as having
physical meaning; action on the composite field can be thought of as a redistri-
bution of the energy among the components,

The resonator modes are denoted by the usual symbology of TEan.
This represents a transverse electromagnetic field with an angular mode num-
ber of m and a radial mode number of n. An arbitrary field distribution,
£(r, ¢), can thus be written as the sum of all possible modes. For fields on
the input mirror, the total ficld is given by

= < —
g(rs, ¢s) = mZ=0 nz=‘,0 A R _ (rs) cos m¢_ (11-11)

where the constants Amn’ because of the orthogonality of the modes over the

surface of the mirror, are giver by

27 1_ 1
{ {Rns (rs) cos .m¢s ‘g'(rs, ¢>S) rsdrsd¢>S
Amn =|— T = {1 . (II-12)
nf R (r )R (r )r dr
0 ns\ s/ ns\ s) s s |

B. Output Power
The output power of the self-focusing resonator is due to a portion
of the resonator field being transmitted through the zoned mirror. Consider

the situation where the resonator is operating with a TEan field distribution.

The normalized field incident on the zoned mirror can be written as




¢ D Attt

Emn(rz.¢z) = ﬁnz(rz) cos m¢_ . {11-13)

The transmitied field is given by the product of this equation and the amplitude
transmission coefficient of the zoned mirror. If absorption is neglected, this

transmission coefficient is related to the reflection coefficient by
- Y.
= - p 2})/2 -
T, (1 pz ) s (11-14)

The total power transmitted through the zoned mirror is proportional
to the square of the absolute value of the transmitted field integrated over the
zoned mirror. Defining PT to be this output power, one can write

2r 1 _ '

P = Cp { { "zEmn(‘_"z’ ¢z) I’ dr do_ (II-15)
where CT is the proportionality constant. By using equations (II-13) an
(I1-14) in equation (II-15) and separating the Vvariables, the output power can
be written as

1 - 2n
P.=Cp { (1 - pzz)anz(rz) I’ dr_ fo cos’m¢ d¢_ . (II-16)
The second integral has .he value of (27) for an angular degeneracy of zero, and
it has the value of (7) for higher-order angular degeneracies. Therefore, for

an angular degeneracy of zero the output power is given by

1
= = 9 - o0 2\IR 2 =
P_(m=0) = 2rC_ { (1 b, )Ian(rz)l rdr (11-17)

and for all other angular degeneracies the output power is given by

1
P (m #0) = 7C_ of (1 b, ) anz(rz)l rdr . (i-18)

-
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The output power, as given in equations (II-17) and (II-18), is based

cn a maximum field amplitude of unity inside the resonator. This measure of

output power is a convenient term for comparing some resonator

characteristics.

C. External Fields

The Fresnel region outside the resonator is of particular impor-

tance as it is there that the focused output is established. The geometry of this

region is shown in Figure 2. The field of interest is located in a plane perpen-

dicular to the resonator axis and located F distance from the output mirror;

this plane is designated the F-plane, and the polar coordinates of a point in

this plane are denoted by (rf, ¢f).

X x
z f
E A
| RESONATOR
AXIS —
* L N
_L '} ! N
i B
Y
z Yf

ZONED MIRROR

Figure 2, Geometry of Fresnel Region Outside Resonator

The source field is that portion of the resonator field transmitted

through the output mirror; thus, by using a cosine dependence for the angular

variation of the resonator field, the source field is given by

13
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[Tanz(rz) cos m¢z]. The field in the F-plane, Ef(rf, qbf), resulting from

this source field can be expressed as?®

-jkL
j 2r p _ a 1
Ef(rf, ¢f)= -2-Kf f Tanz(rz) cos m¢, ——— (1 + cos 6)
0 0 f
crdr do (1-19)

where k is the wave number, (2n/A), and where @ is the angle between the sur-
face normal cf the source and the line segment between (rz, ¢z) and (rf,¢f).
The cases of interest occur where both r, and r, are much smaller than F. In
this region 0 is small; therefore, if the term (cos @) is set equal to one,

equation (II-19) can be written as

a =-jkL
LY o f

. 2
- Jr o A\
Ef(rf, ¢f) =4 g g Tanz (rz) cos m¢z Lf rzdrzd<1>z . (II=23)

In this region of validity of this equation, that is, where ¢ is small, the usual

Fresnel approximations concerning Lf can also be made. The term represent-

ing the change in amplitude as a function of distance is approximated by

1 1 o
LF (II-%1)
f
and in the phase term Lf is approximaicd by
2 2
r“+r -2rrcos¢-¢)
z f 2 f (z f
Lf = |F + o7 F (11-22)

By using equations (II-21) and (II-22) in equation (II-20) and expanding

the cosine term, the following form for the Fresnel field can be obtained:

Silver, Samuel, Microwave Antenna Theory and Design, McGraw-Hill
Book Company, Inc., New York, p. 167 (1949).
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(11-23)
By making use of the relations®
% 1 27
exp[jm(-2—+ B)]Jm(xy) = Z{ exp{j[xy cos (8 - g') + mp']} dp'
(11-24;
and
r - 1 27
expl_jm(g- B)]Jm(xy) =5 { exp {j[xy cos (8" - ) - mp'1}dp' ,
(11-25)

equation (II-23) can be reduced to

m+l

. -kF | &
Ef (rf’ ¢f) = Go8 Moy [(]) A2F1‘re ] -{)pTzﬁnz (rz)

(rz2 + rfz) (21rrzrf)
* exp |-jr —F Jm F rzdrZ . (II-26)

As expected, the angular variation of the field is preserved, and

Ef(rf, q)f) can be separated s

fStratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company,
Inc., New York, p. 373 (1941).
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Ef(rf, ¢f)= R nf(rf)cos mo, . (11-27)

Thus, by neglecting the geometriczl phase term, the radial variation of the

field in the F-plane can be written as

(j) 27

a
m+l P
Bg (rf) T |4 T

s ()

ri+pl 2 r
: sr 22—t (—21)r ar (1-28)
exp 1) AF m \ AF /2% °

-

To facilitate numerical computations the radial distances can be nor-

malized to unit output mirror radius by replacing r, by aprz and T, by aprf.

Then equation (II-28) can be written as

1
R uf(rf) = J TszKmf rz,rf)an(rz)rzdrz : (11-29)
where
a 2
M =-2 (11-30)
p AF
and

Z op Ml » 2 2
Kmf(rz’rf) = 2m(j) Jm (ZﬂMprzrf) exp [ Jpr(rz + rf) ] 5
(I1-31)

It must be remembered in using equation (II-29) that the radial distance is

normalized to ap; for example, ifr

= 2, the actual distance is (2ap).

The transmitted field along the resonator axis can be obtained from

equation (II-29) by setting r, equal to zero. For the case where m is zero this

f

axial field can be written as

16




1
Ef(o, ¢f) = 2nj { Tsz exp [-jprrz’] ﬁnz(rz) rdr . (1I-32)

For cases where m is not equal to zero the axial field is zero.

17
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CHAPTER IIi

CHARACTERISTICS OF THE ZONED MIRROR

The focused output from the self-focusing resonator is established by
the selective transmission characteristics of the output mirror. This mirror
is divided into alternately reflecting and transmitting zones. The reflecting
zones provide resonator feedback and the transmitting zones provide output
coupling. All of these zones arc concentric and are symmetrically located
about the resonator axis,

In this chapter the characteristics of this zoned mirror and its effects
on the focusing properties of the self-focusing laser resonator are considered
in detail. The first section of this chapter is used to describe the method
in which the output mirror is divided into half-period zones. Following this,
the basic focusing properties of the zoned mirror are established by consider-
ing the condition of uniform illumination of the mirror.

The field structure of a laser resonator is more accurately described
by a Gaussian distribution than a uniform distribution. Because of this, a
section of this chapter considers the focusing achievable with Gaussian
illumination of the zoned mirror.

In the last section, the optimization of the zoned mirror is consid-

ered from the viewpoint of maximizing the intensity at the foecal point per unit

18
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output power. It was found that by decreasing the areas of the transmission
zones, and ccrrespondingly increasing the areas of the reflection zones, opti-
mum conditions existed. Also discussed in this last section are some details
concerning the maximum number of zones that can be placed on a mirror and

the maximum f{ocal distance.

A. Half-Period Zones

Suppose that the output mirror represents a constant phase surface
for an incident wave. At the point F on the resonator axis, F distance from
the output mirror, the wave can be viewed as consisting of circular, concen~
tric half~period zones. These zones are determined by the criterion that the
radius separating the ith and the (i + 1)‘"h zones, wherei =1, 2, 3, ..., is
such that the distance from the outer edge of the itb zone to F is greater than
F by (iM/2). For the usual resonator configuration such that

ap > .)\
and a distance F such that

F>»a ,
P

the path difference is given approximately by

The geometry depicting this path difference is shown in Figure 3. The radius

L corresponding to a path difference of ( iN2) , is therefore given by

7/

= (iAW) 2
rzi (iAF) ¢ .
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Figure 3. Path Difference A for Radius of r,

In calculations the normalized radius, obtuined i)y dividing the radius by the
radius of the output mirror, is generally used. This normalized radius is

given by

a 2
P

/s
Bie = (i)\F) . (IlI-1)
zi
From the voint F on the resonator axis, the incident field presents a
phase difference of 7 across each half-period zone, This means, of course,
that at F the fields resulting from adjacent zones tend to subtract and the fields
resulting from alternate zones tend to add. This effect is utilized in obtaining

a focused output from the laser resonator. Output focusing will be clearly

illustrated in the following sections.
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B. Uniform Ilumination of the Zoned Mirror

In Chapter 11, equation (I11-32), it was shown that the field at F

could be written as

1
- Yard -3 2\ s
Ef(o, ¢f) = 2 ({ r,M_ exp ( M, )an (rz) rdr . (-2

The amplitude transmission coefficient is symmetric about the rescnator, but
in general it can vary radially, However, the first case considered is that
where T, is a constant function of mirror radius. For uniform illumination of
the zoned mirror the illuminating function, ﬁnz(rz)’ is constant; therefore, by

setting the illuminating function equal to one, equatton (III-2) becomes
1
= -f 2 =
Ef(o, ¢f) 2miM 7, bf exp ( M r, )rzdrz . (II-3)

This integral can be written as the sum of the integrals across the half-period

zones; that is,

r r '
[ zl zZ 1
Ef(o, ¢f) = M1, l_ [ +«f +.+«f |, (m-9
0 r T
zl zn
where the r g are given by equation (III-1) and 7 is the greatest positive integer
z

i that satisfies the relation

=1

o
zi
The change in variable from r, to x will now be made, where rz and x

are related by

x=Mr (I11--5)

21




and
p .
M =—"F , (11-6
o ( )
The xi corresponding to the T given by equation (III-1) are therefore given by

X, = (III=7)

Thus, equation (III-4) can be written as

) 2 .
E. (0,0 = 7jr fe-]mdx + ;re j'rxdx
f £ Z 0 -1

to ot [ e T™ax | (I1I-8)
n

Performing the indicated integrations results in
f,o .
- -jr ) ( -jem -J7r)
Ef(O. ¢f) (—rz) l(e 1) + \e e

. -jiM = .
B (e-jmr ) e-J(n-l)vr) 5 (e P _ e-er) :

This, of course, reduces to
-iM 7
Ef<0, ¢f) = T”(l -e P ). (II-10)

{f the output mirror consists of an integral number of zones, Mp is an integer.

Thus, the field at F is zero when there are an even number of zones on the out-

put mirror, and it is equal to twice the transmission coefficient when there are
an odd number of zones cn the output mirror.

An examination of equation (III-9) shows that the field at F due to con-
tributions from adjacent zones on the mirror have opposite signs. Therefore,

the intensity at F can be increased by removing alternate zones, This is the
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principle on which the Fresnel zone plate is based.! These zones can be
removed by making T, equal to zero for alternate zones.

Considier the case where the output mirror has an even number of zones
and the odd zones are removed, It can be shown from equation (III-8) that the

field at F would then be given by

2 4
N -j1rx 0 -j1rx
Ef(0,¢f = a7, e ax + [ ax
1 3
M
Py
roo+ [ eax ] (II-11)
Mp-l
This reduces to
Ef(o, ¢f) =T, M (I1-12)

The source field, the illuminating field on the zoned mirror, has a magnitude
of one. Thus, the amplitude of the field at F is (Tsz) times as large as the
field on the output mirror and the intensity at F is the square of (-rsz) times
as large as the intensity of the source. For an integral number of zones on the
output mirror it can readily be shown, via equations (II-1) and (III-6), that
the number of zones is given by Mp. Therefore, since the maximum value of
T, is one, tue maximum intensity at the focal point is equal to the square of

the number of half period zones on the output mirror.

1Jenkins, Francis A,, and Harvey E. White, Fundamentals of Optics,
McGraw=-Hill Book Company, Inc., p. 360 (1957).
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A more physical interpretation can be obtained by relating the number
of zones to the geometry. This can be accomplished by substituting equation

(III-6) into equation (III-12). The result is

()
Ef(O,d)f) = == (Il1-13)

The field at F is proportional to the area of the source field; this is indicated
by the square of the mirror radius. The field is also proportional to the
amplitude of the source field; this is measured by the transmission coefficient.
The decrease in amplitude with distance is expressed by the terra (1/F).

Although achizved by diffraction phenomena, the increase in in*2nsity at
F is due to a foensing of the field transmitted through the output mirror. To
obtain this focused field the output mirror is considered to consist of half-
period zones with only the alternate zones transmitting. Since the fields trans-
mitted through alternate zones add, the result is a maximum field at one point
on the resonator axis. This is the focal point of the zoned resonator.

The development in this section assumed that the source field was uniform
over the surface of the output mirror. This can be approximated in practice
only by resonators having very small Fresnel numbers. A Gaussian distribu-

tion is a more realistic resonator field configuration.

C. Gaussian Illumination of the Zoned Mirror

The field at the focal point will now be determined for a source ficld
having a Gaussian distribution. This is begun by defining the field incident on

the output mirror by
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ﬁnz(rz) = exp (-brzz) ; (II-14)

where b is a real nonnegative constant. By substituting this field distribution

into equation (III-2), the field at the focal point can be written as
1
Ef(o, ¢f) = 2r { T, M e (—jprrzz) exp (-brzz)rzdrz . (1II-15)

The radii of the half-pqriod zones on the output mirror are defined by
equation (III-1). It is assumed that only alternate zones are transmitting,
Thus, if the even-numbered zones are chosen to be the transmission zones, Ty
is finite over the even-numbered zones and zero over the odd-numbered zones,
By using the change of variable indicated by equations (III-5) and (III-6), the
field at the focal point can then be written as

Ef(o, ¢f) = i flz exp [—x(jw + %)]dx + f exp [-x(jw ; Ml)]dx

Y

M

p

G 55y N f exp [-x(jw + —ﬁ—)]dx 5 (III-16)
Mp-l p

where for convenience it has been assumed that there are an even number of
zones on the output mirror. For a source field that does not change rapidly
with r, and for large Mp, it is reasonable to approximate the value of the

source field by a constant value over each zone, Thus, if it is assumed that

Mp is large and that b « Mp,

exp (-xb/ Mp) ~ exp (-ib/ Mp)

in the interval

i=x=(i+1) .




Therefore, equation (III-16) can be approximated by
/M2 -3/M_ 4
E(0.¢)=njr e p]e] dx + e pfej"xdx
f f Z
1 3
-(M -1) b/M Y
N MR p

M -1
1Y

_j7rx

+ e dx | . (II1-17)

By performing the indicated integrations and factoring out the term

exp (—b/ Mn)' this equation can be reduced to

2
b/ -2/ -2b/
Ef(O, ¢f) = (-zrz)e : Mp 1+ (e ® Mp)+ (e ® Mp)

M -2
p

-2b/M e . (111-18)
Foat =

e

The term in the brackets is a geometric series; therefore, when this series is

summed, equation (III-18) becomes
-b/ Mp[ gt ]
Ef(O, ¢f) = (-ZTz)e _WNTP . (11-19)

By assumption, Mp is much larger than b; therefore,

exp (-b/Mp) ~1 - (b/ Mp)

and

ex -2bM)z1-(2bM).
p( / p / P
When these approximations are used in equation (III-19) and the results are

rearranged, it can be shown that equation (III-19) can be approximated by

Ef(O, ¢f) = (\-Tz) (Mp - b)e'b/ . (5%;’/—2) . (111-20)
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it is desirable to examine the focused field as function of both the num-
ber of zones on the output mirror and the taper of the source field. This will
be done by considering a normalized form of the field at the focal point. This
normalized field is defined as the ratio of Ef(o, ¢f) given by eguation (III-20)
to the field obtained with a uniform source field. This reference field is given
by equation (I1I-12), but it also can be obtained from equation (III-20) by taking
the limit as b approaches zero. In either case, the resulting normalized field

is given by
M -Db
= _[p -b/2 [sinh b/2 3
E, (o, ¢f) (T e (_b/'z_ ) (II-21)
In Figure 4 this normalized field is shown as a function of source field taper b

for different values of half-period zones Mp. The field falls off fairly rapidly

with increasing b and it falls oft slowly with decreasing Mp.

D. Optimization of the Transmission Zone Area

The usual configuration for the zoned mirror is such that all the
half-period zones occupy equal area. For Gaussiaa illumination of the zoned
mirror this configuration results in a maximum intensity at the focal point.
However, it may be more desirable to maximize the intensity at the focal point
per unit power out of the resonator; this would be a reasonable basis for
optimizing the power transmitted out of the resonator. If this basis is used for
optimization, it is shown that the area of the transmission zones should be
decreased. This decrease in transmission area is used to increase the

reflection area on the zoned mirror,
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Figure 4. Normalized Field at Focal Point as a Function
of Source Field Taper

It is assumed that the field on the output mirror has a Gaussian distri-
bution of the form given by equation (IlI-14), The inner radius of each trans-
mission zone is held fixed, and tke area of each transmission zone is varied by
changing the outer radius of the zone, It is assumed that the mirror has M
half-period zones, that Mp is even, and that the transmission zones begin at
the beginning of the even-numbered half-period zones; these latter assumptions
are for mathematical convenience. They do not restrict the generality of the
results,

The width of the transmission zones is established by the following

criteria. If (i\/2) represents ihe path difference at the inner radius of a
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transmission zone, then the path difference at the outer radius is given by
[ (i+6) A/ 2], where 6 is a real parameter satisfying the relation
0= gl
and wherei =1, 3, 5, ..., (Mp - 1). The remaining portions of the zoned
mirror are reflecting zones.
The radius of the inner edge of the (i + 1)th transmission zone corre-
sponds to the inner radius of the (i + 1)th half-period zone., Therefore, from

t
equation (III-1), the inner radius of the (i + 1) e transmission zone is given by

o e\/2
r. =(‘7‘F) , (I1-22)
z1

a ?
p

and the radius to the outer edge is given by

i
(i + 8)AF 72

rz(i+6) = —5—2—' 5 (111-23)
p
By defining At to be the area of this transmission zone,
= 2 _ w2
ey (rz(i+6) rzi) y
Using equztions (III-22) and (III-23) in this equation, the area can be
expressed as
o bl (I1-24)
t ap2

It is interesting to note that the area of this transmission zone is independent
of the zone number; hence, the areas of all transmission zones are equal.

By referring to equation (III-16), and by noting the differences on the
limits of integration, it can easily be shown that the field at the focal point is

given by
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1+6 . b 36 b
Ef(o. ¢f)= mjr, _j exp —x()n + ﬁ-) dx + f exp —x(pr + ﬁ—) dx
1 p 3 p
M -1+6
3 b
. M
Mp-l P

1t is assumed that Mp is large and that b is much less than Mp; therefore,
exp {-xb/ Mp) ~ exp (—ib/ Mp)

in the interval

1A

X = (

J9
Thus, equation (III-25) can be evaluated in. .r to that used to

i

evaluate equation (!II-16), The result is that the 1o d field can be approxi-

mated by

Ef(o' ¢f) = (—rz) (1 - e )(M - )e'b/2<§%gﬁ) . (11-25)

Before proceeding, the assumption made previously thatb « M_ will be

invoked and the term (Mp - b) in equation (III-26) will be replaced by Mp'

The field at the focal point is then given by

)= () () )

The iniensity at the focal point is proportional to the square of the
absolute value of the field at the:focal point. Thus, by using equation (III-27)

the intensity at the focal point is given by

M / ’ 2
i} p) -b/2(sinh b/z) )
If ZCT TZ( 2>e (_W-Z__ (1 - cos 76) , (III-28)

where CT is the constant of proportionality. To emphasize the relation between
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focused intensity and the area of the transmitting zones, a normalized form of

the intensity is defined by

"I} =1 - cos nd . (I11-29)

in order to maximize the focused intensity per unit output power, an
expression for output power must now be obtained. From Chapter II, equation

(II-17), this transmitted power is given as

1
= I+ R 2 -
P = 21C ({ R (rz) r dr_ . (IH--30)
By using the source field as given by equation (III-14) and the radii of the
transmission zones as defined by equations (III-22) and (III-23), the output

power can be written as

T2 (1+0) T2 (3+0)
= 2 oioe: 12 j -
PT = 27rCT-rz f exp ( 2brz )rzdrz + f exp (zbrz)rzdrz

r r

z1 z3
Ty (M -1+6)
; 1Y .
] Y &
g | oxp ( 2br_ )rzdrz ) (I11-31)

! rz (M -1)
: P

By using the change of variable as indicated in equations (III-5) and (III-6),

e, oS

this equation can be expressed as

7TCTTz2 1+6 3+6
! PT =\—— f exp (—2bx/ Mp)dx + f exp (-be/ Mp)dx
{ D 1 3
? M -1+6
| p
! o+ exp (-2bx/M \dx | . (I11-32)
| M -1 P

p i

Since b « Mp, PT is given approximately by
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, 2 = -
. (-:CTTZ )(6)e 2b/Mp - ( 4b/Mp)
T M =
p
M -2
p

_a/M \? a/mY 2|, (m-33)
+\e P + ,.. + \& P

This, of course, reduces to
7C.1 2 (-Zb/M) -2b
B T z : p 1 -¢ »
PT (———MP )(C) e (——:Wﬁ—p> . (I11-34)

Finally, by using

exp (-Zb/ Mp) ~ 1

and

1 -cxp (-4b/M )} = 4b/M ,
P () =

equation (III-34) can be approximated by

__1_ 2 -b{ sinh b
PT—anTTZGe ( b ) .

The intensity at the focal point per unit ouiput power is obtainable from

(111=-35)

equations (I[II-28) and (I1-35). The resultis

<_I_f.) =(Mp2) @%ﬁ@)z (1 - cos 776) .

P 7 (sinh b) 5
Lt\" b

T
The dependence of this ratio on the transmission zone parameter can be deter-

(III-36)

mined from a normalized ratio defined by

/_ff_ 1 - cos7é
\p =( 5 ) 3 (111-37)
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Both this equation and equation (III-29) are shown in Figure 5 as a function of
the transmission zone parameter 6. As was mentioned previously, the focused
intensity i3 a maximum when the transmission zones correspond to alternate half-
period zones; this condition occurs when 6is equal toone. Onthe other hand, to
maximize the focused intensity per unit output power, eachiransmissionzone area
should be decreased to about 74 percent of the area of a half-period zones,

One of the assumptions used in thi= development was that the dimensions
of the output mirror be much greater than a wavelength, This limitation was
imposed 80 as to assure the dominance of aperture effects over edge effects.
This constraint can be better specified by requiring a minimum zone width of
at least ten wavelengths. Since the minimum zone width and the maximum
number of zones are related, this minimum zone width can be used to deter-
mine the maximum number of zones that can be placed on a given mirror.

To determine this relationship let Mpm be the maximum number of
zones on the output mirror and assume that 6 is equal to one. Thus, for an
integral number of half-period zones on the output mirror, the width of the
minimum zone is obtainable from equations (I1II-22) and (III-23) as

i
Mm;u?/2 (Mm-mup}/2
Ar= _L—T - p .

a a
p p

The term (apz/ AF) is equal to the number of half-period zones on the output

mirror [equation (III-6)}. Therefore,

N
pm
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For Mpm laxrge,

i
Ar = (ZM ) . (II1-38)

pm
The minimum zone width was fixed at ten wavelengths; however, in equations
(I11-22) and (JI1-23), radii normalized to the radius of the mirror are used.
Therefore, if this is taken into account,

a

Mo z% : (I11-39)

that is, the maximum number of zones that can be placed on the output mirror
is approximately equal to the radius of the output mirror divided by twenty
times the wavelength.

The magnitude of the field at the focal point is proportional to the
reciprocal of the focal distance; thus, fccusing cannot be achieved at arbitrarily
large distances. The maximum focal distance is hereby defined to be the
maximum distance such that the focal point intensity is ten times as large as

the maximum intensity of the source field. In all cases, the source field has

a maximuin magnitude of one. Consider the case where the source field is
uniform and the area of the transmission zones are equal to the area of the half-
period zones. The maximum focal distance Fm can be obtained from equation

(III-13) by setting the focused field equal to N10. The result is
2

Y
[]

F = ap Z 4
m  NIOA (Ii-40)

For Gaussion illumination of the output mirror the maximum focal

length will be less than that given by equation (III-40). This can be seen by
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referring to the expression for the field at the focal point for Gaussian illumina-

tion of the output mirror, equation (11I-20).
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CHAPTER IV

RESONATOR MODE ANALYSIS

The numerical techniques used to determine the mode structure of the
self-focusing resonator are discussed in this chapter. In the first section
the resonator equations are reduced to a matrix form. Following this, the
method used to find the fundamental resonator mode is presented. In the last
section the method used to determine higher-order resonator modes is

presented.

A, Matrix Formulation

The resonator equations are given in Chapter II, equations (II-3)
and (II-4) ; they are repeated below for reference. These equations relate the
field at a point on one mirror to the integral of the field over the other mirror.

On the output mirror the field is given by

1
an (rz) = ~£ Pg NKm (rz’ Ts -ﬁns (rs) rsdrs (IV-1)

and the field on the input mirror is given by

1
R (rs) = {) o NK (rz. rib 'ﬁnz (rz) rdr . (IV-2)
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The field on the output mirror at a radial distance T is given by

1 _
L= (rzi) = (J) L (rzi’ rﬂ)Rns (rs) rsdrs ) (IV-3)

The field on the output mirror can be written in a sampled form as a

column vector. That is,
nz (rzo)

an<rz1)

[an (rz)] = . . (IV~4)
R ("2(p-1)

L d

In a similar manner, the field on the input mirror can be expressed as

1
R (rs j) = { o, NK (rz, rsj) -ﬁnz (rz) rzdrz , (IV-5)

and in a sampled form

e

() |
“us("a1)
[Rns (rs)] = . : (IV-6)

Rns (rs (p-l»

By utilizing a numerical integration scheme the integrals in equations

(IV=-3) and (IV-5) can be replaced by summations. Then, if the sampling
intervals are made euivalent to the integration intervals, the resonator equa-
tions can be placed into a matrix form.

By using Simpson's rule for integration, the resonator equation relating
the field on the output mirror to the normalized field on the input mirror is
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given by

i Roe (t20) 1 ‘ﬁns(rso)
an(’ﬂ) ﬁnsgrsl)

| B MR )
an (rz ( p-lﬂ

T T m——— jui

y  (IV=7)

Rns (rs (p-1 ))

e e —

where
Km (rzo’ rso) Km (rzo, rsl) e Km (rzo’ Ts (p-l))

F (K] = Km (rzl’ rso) Km(rzl’ rsl‘) e Km (rzl’ Ts (p-l)) .
Eg : :
i; K (rz(p-l) : rso) Km(rz(p-l) : rsl) e 'Km(rz(p-l) T (p_li)l
| - P —
1 Py (rs 0) 0 e 0

[ps] - 0 ps (rsl) 000 0
} :
% ! 0 0 P (rs (p-l))d
i Prs 0 0 0 ]
g [rs] N . 0
s -0 0 rs (p-1) :
: and
] rl 0 0 0 N
E 0 4 0 0

S1=1o o 2 0
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Since the integration interval is the normalized radius of unit length, the incre-

mental interval, h, is equal to {1/(p-1)}, where (p) is the number of sample

points,

In a similar manner the field on the input mirror is related to the field

on the output mirror by

where

and

Poa(fee) |

Rns rsl)

Rns;(.rs (p-1 ))
Ll
-

P (rzo)

0 (rz(p_1 ))-

In order to reduce the amount of notation,

40
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are defined. If these equations are used in equations (IV-7) and (IV~-8) and
the column matrices are written in reduced forms, the resonator equations

can be written

[an (rz)] = [AS] [‘Rns (rs)] (IV-11)

and
[Rns (rs)] = [Az] [an (rz)] : (IV-12)
The unnormalized fields are related to the normalized fields by the

ta s 1
complex constants ynz and -yns hat is,

[an (rz)] =v,, [ﬁnz (rz)] (IV-13)

[Rns (rs)] = yns[ﬁns (rs)] . (IV-14)
As was mentioned in Chapter II, these ccmplex constants represent the value of
the unnormalized fields at the radii where the field amplitudes are maximum.
Thus, the normalized fields have a maximum magnitude of one.
Substitution of equation (IV-13) into (IV-11) and equation (IV-14) into.
:IV-12) leads directly to

Vnz :ﬁnz (rz)] - [As] [ﬁns (rs)] (IV-15)

and

Vns :ﬁns(rs)] [Az] [ﬁnz(rz)] : (IV-16)
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These cquations represent the inatrix formulation of the resonator equations.
To reiterate, these equations relate the field on one mirror of the resonator
to the field on the other. Through £, (rz) aid ps (vs) the reflectivity of the
mirrors can be made to vary as a function of mirror radius. This feature is
necessary for expressing the selective reflection characteristics of the zoned
mirror. In the above development Simpsor's rule was used; however, other
numerical integration techniques have been considered and they lead to results
which can be expressed in the form given by equations (IV-15) and (IV-16).

By combining equations (IV-15) and (IV-16) the resonator problem can
be put into the form of the eigenvalue problem. ‘i'o show this, equation (IV-15)

is substituted first into equation (IV-16) and

waltu)] ) B ()]

is obtained. With the opposite substitution,

ynsynz[ﬁnz(rz)-.] ) [AS] [Az] [ﬁnz(rz)] ) RAESS

By defining
Yns'nz = ‘n’
[ [Ad] = [Bas] -
z ] z8
and

(4] [~ = 24
sj |z 8z
and by using them in equations (IV-17) and (IV-18), it is seen, after some

rearranging,
[st - I‘nI] [Rns (rs)] =0 (IV-19)
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and

[Bsz = I‘nl] [an(rz)] =0, (IV-20)

L where I 's the (p) order identity matrix.

B. Fundamental Mode Analysis

A form of the power method was used to determine the fundamental
r=.odes of the self-focusing resonator. The power method is a numerical pro-
cedure that can be used to solve eigenvalue problems whose operating matrices
are well behaved. By well behaved it is meant that the matrix does not have
degenerate eigenvalues or eigenvalues having the same magnitude but different

phases.

Mode losses are determined by the magnitude of the eigenvalues; thus,

different values of eigenvalues mean that the modes have different losses. For

a given angular degeneracy, the power method extracts the mode having the
least loss, This mode is called the fundamental mode.

Basically, the' power method of mode analysis is an iterative-technique
whereby an initial estimate of the field is operated upon by the resonator

matrix until the field converges to a mode of the resonator. Convergence

T e B A e T e Vi s T U] PR DAL FT e T et

means that in a double pass the normalized field repeats itself. That is, the

normalized field after one douple pass is identical to the original field; hence,

the field distribution is a solution to one of the resonator equations.

w

SRt Sy

According to equations (IV-19) and {IV-20), the resonator equations

o e e atpans

can be written in a matrix format in terms of the field on the input mirror as
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I‘n[ﬁns (rs)] ) [Bz-s] [ﬁns(rs)] N2

and in terms of the field on the output mirror as

rn['ﬁnz (rs)] = [Bsz] [an(rs)] : (IV-23)
Solutions to these equations represent the inodes of the resonator. Since the
ficlds on the two mirrors are related by equations (IV-15) and (IV-16), it is
necessary only to solve for the field on one mirror. The other field would be
obtainable from eqguations (IV-15) or (IV-16),

The initial estimate of the field is called the zeroth iteration. Thus, by
working with the fields on the input mirror and by denoting the iteration by a
superscript, the initial field distribution is written as [ﬁ(r)ls (rs)] . On each
iteration the field is operated on by the resonator matrix. This operation
represent a double pass of the wave in the resonator. Aiter each iteration the
field is normalized by dividing it by the value of the field where the magnitude
of the field is a marimum. This norimnalized field is then used as the input for
the next iteration and the process is repeated.

This iteraticn procedure from the first to the kth iteration is outlined

by the fullowing equations:

iR:lS (rs): = {st: [ﬁg)s (l‘s)] (IV-24)
_Rfls (!‘S) i = [st_ ['ﬁ:ls (l‘s)] (IV-25)
:R:s (rs): - [st: [ﬁfls (lfs)] (IV-26)

[Ris(rs)] : [st: [ﬁl;:(rs] ’ (sl
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The unnormalized and normalized fields are related by

i if<i
= \ L]
[Rns (rs)] rn[nns rs’] : (IV-28)
wherei =1, 2, ..., k, and I is the value of [Rl (r )]where its magnitude
n ns\'s
is a maximum, It is essential to note that if [‘ﬁ:ls (rs)] is a mode of the
resonator, that is, a solution to equation (IV-22), then I‘:l is the corresponding
i 9 i
eigenvalue for that mode. If [Rl (r ) J is not a resonator mode then F_l is not
ns\ s il
an eigenvalue, but merely a complex constant used to normalize the field.
By using the above equations, the normalized field at the kth iteration
can be expressed in terms of the initial field as
°n kl-
[R:s (rs)] = _—1—‘12 [B S] R ()| - (IV-29)
CIE? u T =
L n n
It kas been shown that in the limit as k — o the kth distribution is independent
of the initial distribution.! Because of this, there is some liberty in choosing’
the form of the initial field.
To keep the results relatively general, suppose that the initial field is
composed of all possible modes for a given angular degeneracy. The initial
field can therefore be written as

[ﬁ; " (rs)] = jéo aj[ﬁjs(rs)] s (IV-30)

where the aj are finite, complex constants. The resonator matrix is of order

(p) and therefore has (p) solutions. These solutions are represented by the

'Hildebrand, F. B., Methods of Applied Mathematics, Prentice~Hall,
Inc., p. 427 (1952),
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field distributions [ﬁjs(rs)] . It wiil be assumed that these fields are ordered
in relation to their eigenvalues such that

II‘jl > T}l—l‘ (Iv=-31)

Whel‘e}=o, 1' eoey (p-z)o
‘Substituting equation (IV-30) into equation -IV-29) results in
-k 1 k P-1
[Fhe) = (G P o :
ns\'s, 2 ok | zs Za[n r].(IV-S‘.)
Taking the operator matrix inside the summation gives

[Roa(ra)) = (“_1—1,:") lil a [st]k[ﬁjs )] . av-sm)

r;r; oo 0
If one uses the knowledge that the [ﬁjs (rs)] are solutions to equation (IV-22),
it can be observed that cperating with [st] on [ﬁjs (rs)] is ecuivalent to
multiplying the ficld by its eigenvalue; therefore, (IV-33) can be written as

[B)] - ( ‘ )

r‘rz..rk
nn """ n

p-1

Ly () Bol)] - v

¥

From equation (IV-31) it is obvious that for large k, the j = 0 term will
dominate. Therefore, the'field on the kth iteration, for large k, is given by
[—k ] 1
R_(r = [ —— kr=
na("s) (1*1 ... I‘k>“°(r") [ROS(rs)] ' (V-33)
nn n
and since I‘;l, I‘;, coe I‘lg, ag, and Ty are constants it follows that

-k ,
[Rns (rS)] - [ROS (rS)] ' SNl
This heuristic development has led to the important resu't that the field distri-

bution obtained by the power methed is the dominant mode of the resonator,
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This mode veprescnts the field distribution which experiences the leas(f double
pase loss,

If an initial field ie chosen that has no component of [."i - (rs)] one
might be tempted to assume that the final field would be [ﬁls(rs )] . This
would not be true; the final field is independent of the initial field. This can be
visualized in a practical sense by noting that altnough the sampling process
can be made accurate to any dcgree, it is not exact, Therefore, it is
impossible to start with an initial field that is exactly a pure mode, and it can
be assumed that because of this inexactness, the initial field contains at least
a small portion of the dominant mode. This way of looking at the initial field
distribution is analogous to a laser resonator having an initial field generated
by the spchntaneous emission. The probability of the spontaneous emission not
having a component of the dominant field is inconceivably small.

As was noted previously, the power method results in the field con-
verging to a configuration independent of the initial field distribution. Hence,
the field at any iteration can be considered to be independent of the final field;
and therefore convergence depends on the accuracy of the resonator matrix
and not the initial field. On every iteration the field is operated on by the same
resonator matrix. This matrix acts as a reference to which the field is con-
tinually compared. Convergence occurs when the normalized field reproduces
itself from one iteration to the next.

This concept of convergence can be formalized in the following manner.

By referring to equation (iV-34), the field is said to be converged if
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lﬁ:is(rs) - ﬁ:l(rs} l¢c Ax1
for all values of T This means that the field has converged when the maxi-
mum: difference of the field from one iterztion to the next is less than A, This
converged field represents a pure mode of the resonator model to within an
accuracy given by A, Values cf A used in this study varied from 10~7 to 10~4,

It is important to realize that convergence to a given degree does not
imply that the resulting field has the same degree of accuracy. Convergence
in itself is a measure of the stability ot the numerical model.

Consider the accuracy with which a mode obtained with the numerical
model represents an actual resonator mode, This is a measure of the accuracy
with which the numerical model represents the integral equations, A method
described by Scarborough? was used to determine this accuracy. Tc measure
the accuracy cf a given resuit a second solution is obtained by using twice the
number of sample points. The error in the first solution then has a magnitude
of approximately (16/15) times the difference in the two solutions., In this
study it was found that the resonator modes were obtained to within an accuracy
of about one percent.

The iterating procedure given above results in the field being calculated
on every double pass. However, it is sometimes advantageous to calculate the
field on every pass. This single pass power method makes usz of the form of

the resonator ecuations as given by equations (IV-11) and (IV-12),

%Scarborough, J. B., Numerical Mathematical Analysis, Fourth Edition,
The Johns Hopkins Press, pp. 178-179 (1958).
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For the single pass method an initial field distribution is assumed, say
[ﬁ;’m (rs)]. This is used in equation (IV-11) and the field on the output mirror
is calculated. This f*:1d is normalized and substituted into equation (IV-12),
Normalizing the field obtained with this equatior gives[l_{:ls (rs)] . This field is
substituted back into equation (IV-11). This procedure is continued until the
field converges to[l—{:s (rs)]. An examination of the pertinent equations wiil
show that this field is identical to that obtained with the double pass method.

Although the results are identical, there are differences in the computa-
tional times. It is because of this difference that one method might be pref-
erable over the other. For both methods, each iteration involves the multipli-
cation of a p-term column matrix by a (p)th order matrix. These operations
will be denoted by Pp. For the double pass method (k) iterations are required
for convergence, and for the single pass method (2k) iterations are required;
therefore, the single pass iterating procedure requires ka more cperations,
However, the operating matrix for the double pass method, obtained by mul-
tiplying the two ( p)th order operating matrices [As] and [Az] together,
requires pPp computations. Therefore, if (k/p) < 1 it would require fewer
total operations to use the single pass power method, and if (k/p) > 1 the
double pass power method would require fewer operations.

In the procedure used above, the basic power method was modified
merely by using a different form for the resonator matrix. In doing so it was
found that under certain conditions computational time could be reduced. With
the goal in mind of minimizing computational time, another modification of the
operating matrix will be developed.
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Conslder the form of the power method as expressedby equation (IV-29).

This equation caa be rewritten as

i=k i) 1 "
|Rns (%)) = iz K l[st]j]k/jﬁgs (ry) »  (v-3D)
no n

where (k) represcnts the number of iterations required for convergence and (j)
is an integral submultiple of (k). This immediately suggests the possibility of
using [[st] j] as the operating matrix and iterating (k/j) times. Each itera-
tion would then be equivalent to (j) double passes in the resonator; hence,

(k/j) iterations would be equivalent to (k) double passes. For some resonators
this modified power method offers the advantage of decreased computational
time.

Each iteration involves the multiplication of a p-term column matrix by
a (p) L] order matrix. As hefore, these operations are denoted by Pp. There-
fore, there are a total of (k/j) Pp operations involved in this iterating process.
The number of computational operations required to generate the oper-

ating matrix from [st] can also be related to Pp. If the values of (k) and (j)
are limited in such a way that j = 2h, where (h) is an integer, the method of
multiple squaring can be used to calculate the operating matrix. In this method
[st] is squared, the result is then squared, ete., until [[st] j] is obtained.
Each squaring operation is equivalent to multiplying a (p) ih order matri. times
a (p) th order matrix; therefore, each squaring requires pPp computations; and
since (h) squaring operations are required, a total of hpPp computations are
needed to generate the operating matrix,

the operating matrix.
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The practical limitations resulting from the constraints placed on (k)
and (j) are not as severe as one might imagine. This is because (k) cannot
be accurately predetermined, and to assure a high probability of convergence
(k) is usually estimated somewhat high. Therefore, since (k) is only approxi-
mately correct, little is lost by using the permissible value of (k) nearest to-

- that estimated..

The computations required for normalizing the field, for cases where
p 3 1), are small compared to Pp. Since these are the cases of interest, the
computations required for norinalizing the field will be neglected. Therefore,
the total number of calculations, T, will Le approximated by the sum of those
required for iterating and those required for generating the resonator matrix;

that is,

L
T =( = hp)P . (IV-38)
2 p

Since it is desirable to minimize the number of calculations, (h) is

temporarily assumed to be continuous and 1' is differentiated with respect to

sl

(h). Setting the result equal to zero and simplifying gives

(k/p) = (zh/ln 2) . (IV-39)

This ratio, (k/p) , is shown as a function of (h) by the dashed curve in

A e e e

Figure 6. However, (h) can take only ::tegral values, and therefore this
curve is only correct for these irtegers. Fcr values of (k/p) that give an (h)

between the integers (hi) and (hi i 1), equation (IV-38) must be examined to

determine which of these integers results in minimum T. This can be done by

equating T(hi) and T(hi + 1), where

g e i
R o i S T T, T T T
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T(hi) = (—l;l-; + hip) (IV-40)

2

ﬁ 3 'I‘(hi +1) = hil + (hi + 1);,)1»p r (IV-41)
2 1

and solving for the corresponding value of (k/p). This gives

hi+1
(k/p) = 2 . (IV-42)

The value of (k/p), as given by equation (IV-42), represents the cutoff
between (h) and (h, + 1). That is, one would use an (h) of value (h) for
i i i

values of (k/p) such that

h+1

This is indicated b the stairstep curve in Figure 6.

A measure of the computational time saved by using this modified power
method can be obtained by comparing the number of computations required for
this method to that required for the double pass power method. For the double
pass power method, (j) is equal to one, and therefore (h) is zero. Using this

in equation (IV-38) gives the number of computatior.: as ka. The ratio of the

T L T e S e S o T e S Y P g s
i Gy
[\
=
1A
k=)
S
1A
[\
| )
.

number of computations required for the nower mechod to that required for the

modified power method is given b/

T(h=0 _ _(k/p)2"

T 1/p) + 2

(IV-43)

R
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The (k/p) obtained from this equation is shown as a function of T(h = 0)/T(h)
in Figure 7. Thus, if an estimate of (k/p) is known, an estimate of the
advantage gained by using the modified power method can be obtained. For
instance, if (k/p) is ten, approximately twice as many calculations are needed
for the power method as are needed for the modified power method. To sum-
marize, for(k/p) = 1 the single pass power method requires the fewest com-
putations, for 1 = (k/p) = 2 the double pass power method requires the

fewest computations, and for (k/p) = 2 the modified power method requires

the fewest computations.

C. Higher-Order Mode Analysis

The method used to obtain higher-order modes is based on a tech-
nique suggested by We:1s.3 It is a mathematical operation whereby the nor-
mally dominant mode is suppressed in such a way that the next order mode
becomes dominant, The process can be extended to higher-order modes.

This technique requires that the field distribution be operated on with

the matrix operator [J ], where

[£] = [st] - T . (IV-44)

The term [qu] is the resonator matrix, I‘S is the eigenvalue c¢f the mode

being suppressed, and {I] is the idzntity matrix,

Swells, W, F_, IEEE J. Quantum Electronics, Volume QE-2,
pp. 94-102 (1966).
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To illustrate how this operation suppresses a given 1mode, the most
general form of the initial distribution will be assumed. As before, this means
that the initial distribution is represented by a sum of all possible modes. For

the pth order resonator matrix this is written as

[F] = 2 2[Rt (av-43)

where the aj are finite. Assuming further that the mode being suppressed is the
zeroth order, the initial field is tnen operated on by [£]; this gives

p=1 =l
1[Rog (5] = [Pee] j;o 3 [Rys ()] - o jZ=)0 4 [Ris(s)] -
(IV-46)
Operating with the resonacor matrix on a resonator mode is equivalent to mul-

tiplying that mode by its eigenvalue. Thus, equation (IV-46) can be written

as

[}l[n" s] io ”[ js(rs)] FoZ [js(rs)] (IV-47)

Whern the summations on the right-hand side are combined, the lowest-ordered

mode subtracts out., The result is

.g (4] [ (rs)] Z J( = ro) [st (rs)] : (IV-48)
; F
3 This field is normalized to a peak magnitude of one and then used in place of

[ﬁ;s (rs)] as the input field for the iteration. The resulting normalized field

can be expressed by

.
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(b) [ £] [R° (r )] = ﬁ ( y " I‘o) [ﬁjs(rs)] 5 (IV-49)
where (b) represents the normalization constant. Therefore, by defining

C,=ba (I, - T},
j j( j °)
p-1
-o - R -
() 4] [Rns(rs)] ), Cj[st(rs)] : (IV-50)
F1
Comparing the right-hand sides of equations (IV-50) and (IV-45) shows
that they are similar except that in (IV-50) the lrwest-order mode has been
completely suppressed. Thus, applying the power method to the field given by
equation (IV-50) will result, at least conceptually, of [Rls (rs)] dominating.

That is, after k iterations, the [ (r )] field will dominate over the higher-

ordered modes. The field after k iterations is given by

el (i )5, o )] -

where 1"; is the normalization constant after the ith iteration and (1" i )k is the
eigenvalue of the jth mode raised to the kth power. Thus, for sufficiently

large k and finite C,,
k
ey (r ¥ » o ()1 - (IV-52)

forj=2,3, ..., (p - 1), and equation (IV-51) becomes
k
=k _ Cy(Ty) =
[Ras(ea)] - (r, — 1,k)[“ls(“s)] : (IV-53)
nn n

Since C,, Ty, and FL, I‘; Sp— l‘l; are constants,
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[Rtea)] = [Roaca)] - (V-4

The implementation of this mode suppression technique is not as
straightforward as the above example indicates. This is because the lowest-
order mode cannot be exactly suppressed. Inexactness in the value of I‘s
results in the fieid containing a portion of the mode being suppressed. There-
fore, even though it is small, the magnitude of this mode increases with every
iteration with respect to the higher-ordered modes. If the field is iterated
sufficiently the lowest-order mode will dominate.

The immediate conclugion is that the mode suppression operation should
be applied more than once. However, if it is applied too often the resulting
field distribution may not be that of the desired mode. This is because
application of the suppression operation may result in higher-order modes
increasing in magnitude relative to the mode being extracted.

The lack of accuracy in the eigenvalue of the mode being suppressed
can be denoted by substituting (I‘s + A) for l‘s, where A represents a measure
of this inaccuracy. In making this substitution it can be shown that every
application of the suppression operation is equivalent to multiplying the jth
mode by (I‘j - l‘S - A). As was mentioned previously, each iteration is
equivalent to multiplying the jth mode by its eigenvalue. Therefore, if the
zeroth order mode is being suppressed, and the initial field is tha' given by
equation (IV-45), the field after (u) suppressions and (k) itevations will be

proportional to




AR DR

j%—.;o 3 (I‘j - Ty - A)“(rj)k [ﬁjs (rs)] . (IV-55)

Thus, for the j = 1 mode to dominate the following condition must hold:

k la,|
Iy - Ty - AL\ /Iy { 1
(lI‘j o AI) (lrjl>» BT (Y=~68)

wherej = 0, 2, 3, ..., (p - 1).

From (IV-56) it is seen that the relative magnitude f the 1st mode to

I, -T, - A

I‘j - ro - A
suppression operation. As has been stated previously, the eigenvalues are

the jth mode changes by a factor of for each application of the

assumed to be ordered such that

Thus, it is reasonable to expect that for somé cases |T'y| > II‘j |. If the con-
dition also exists that |A| « I’y - T'yl, then
Ity - T, - A T
L | =1_1 . L
(lrj T, -al) " |T, L
This means that whenever
Iy
r—o -1l <1,

it is possible that the suppression of the zeroth 1ode results in the j = 2 mode
increasing relative to the j = 1 mode.
Consider now equation (IV-56) for the case j = 0. For each application

of the suppression operation, the ratio of the j = 1 mode to the j = 0 mode is

Iy -T,-A
- a

multiplied by ; therefore, for the ratio of these modes to

increase, it must be that
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Al < ITy = Ty = Al . (IV-59)
Simpler but more stringent requirements can be placed on |A| by noting that
ily = Ty = Al 2 [Ty - Tyl - 1A]
and that if *
Al < ITy = Tgl - | Al
the inequality in (IV-59) is satisfied. Therefore, reducing this last inequality

gives

INREALE A (IV-60)
This ineguality expresses a sufficient condition on A such that each application
of the suppression operation will result in the j' = 1 mode increasing relative
to the j = 0 mode.

It is apparent that both mode suppression and iteration operaticns ave
necessary for the j = 1 mode to dominate, Consider the inequality expressed
in (IV-56); in particular consider the j = 0 mode, j = 1 mode, and j = 2mode.
Obviously, for the j = 1 mode to dominate over the j = 0 mode one must have

k
>

r, - T, - af"

A

Iy
Ty

2

2| (Iv-61)

and for it to dominate over the j = 2 mode one must have

k a

u
i -T,-A| ITy ]
T,-T,-a| [T.| Zla|" (NE62)
i j
More strict requirements are
u k
Ity - Tyl - IAI) Ty a8
=] >» -63
( IAI Fo ay (v )
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and
u k a
Iy = Tot = 1A\ [Ty i
e—] [ — Y W-64
(lI‘j - Tl + 1A} I‘j > a, ( )

These requirements are somewhat more amenable to evaluation than (IV-61)
and (IV-62).
It is assumed that A is given by

1
IAIR"—If‘l-I‘ol . (IV‘GS)

For most cases of interest this should be an easily obtainable accuracy.

From equation (IV-37) one can obtain

r
1> Iy > ]
T, Ty
and
o1 1
1> T, > T,
Therefore, it is assumed that
DT
=1 =
T & Pol . (IV-66)
As it is expected that*
|r,
—]- p Lj
|r‘1 Ty ’

*For a symmetrical resonator having a Fresnel number of one and
plane, circular mirrors, the eigenvalues of the various modes were examined
in some detail. It was found that the magnitudes of these eigenvalues obeyed
T | [T
Irn-i-l

r
degeneracies of v, 1, 2, or 3.

n+2

the inequality for a =0, 1, 2, 3, 4 and for angular

n
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using (IV-66) in (IV-64) should increase the convergence requirements,
- For convenience it is assumed that al! the modes are present in the
initial field wi:h equal magniwmdes; that is,
iagl = la;l = lagl = ... . (IV-67)
With experience, the initial field can usually be chosen so that the magnitude
of the j = 1 mode is greater than the magnitude of any other mode.
It is also assumed that

II‘J. - Tyl™ ITy =~ Tyl . (IV-68)

For resonators with small Fresnel numbers this assumption should be reason-
able; however, it must be gramed that (IV-68) is very approximate.

By using the above in equations (IV-63) and (IV-64),

ulr k
(99) 1=} =1 (IV-69)
Ty
and
ulr" k
(0, 98) I—° » 1 (IV=70)
1

are obtained. I convergerce is aifected equally by the j = 0 mode and the
j =2 mode, then the left-hand sides of equations (IV-69) and (IV-70) can be

equated. From this one can obtain

(k/u) =~ (2.3)/In

Ty

This relates the number of iteration operations per number of suppression

operations required for convergence to the j = 1 mode. A plot of this expres-

Ty

T varies in some inverse manner to
|

sion is given in Figure 8. The ratio

the resonator Fresnel number; for large Fresnel numbers the ratio approaches
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(k/u), RATIO OF ITERATION TO SUPPRESSION OPERATIONS

10°—
F.
10-1L 1 Lol b aaaal
10 1ol 102
1r
=, EIGENVALUE RATIO

Figure 8. Ratio of Iterations to Suppression Operations as a Function
of Eigenvalue Ratio
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one and for small Fresnel numbers it is much larger than one. Thus, for
resonators having large Fresnel numbers (k/u) should be large and vice versa.
It should be noted that the more accurate I'y is known, the larger the
ratio of (k/u) can be used. In practical terma this means that the total number
of suppression operations can be reduced. However, a word of caution is in
order: The computational time saved in reducing the number of suppression

operations may be less than that required to obtain I'y to a greater accuracy.
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CHAPTER V

TRANSVERSE MODE CONTROL

For optimum operation of the self-focusing laser the resonator must
oscillate in a single transverse mode. Although focusing can i.e achieved with
higher-order modes, it has been found that the best results are obtained when
the laser oscillates in the TEM;; mode. This mode has the field configuration
wkich must closely approximate the desired uniform field. In the usual plane
parallel resonator the TEM,, mode is the dominant mode; however, this study
has shown that the selective reflection charanteristics of the zoned mirror may
change the order of the mode losses. In this case a higher-order mode
becomes dominant, and mode control is then necessary.

'The usual technique for transverse mode control is based on the fact
that diffraction losses are different for different order modes. Mode control
is achieved by placing apertures in the resonator in such a way that undesired
modes experience losses greater than those of the desired mode. These aper-
tures decrease the beam cross section; and since the zoned mirror of the self-
focusing resonator should have a large radiating area, this method of mode
control is not desirable.

In this chapter another method of transverse mode control is considered.

It is based on a principle of mode enhancement: Losses of the desired moda2
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are reduced by introducing a field distribution, identical to the desired mode,
into the laser resonator. This has the effect of reducing the net loss of the
desired mode; and if its loss is reduced beyond that of all other modes, this
desired mode will dominate,

This mode enhaﬁcement technique is based on the mode switching work
of Johnston, et al.,! who experimentally demonstrated that the transverse
mode structure of one laser could be switched to another mode by coupling
radiation into the resonator from a second laser, Based on their results that
the transverse mode structure of one laser could be controlled by another
laser, a computer model was develaped to simulate the coupling of radiation
from one laser into another, This model was then used to evaluate the
effectiveness of using mode enhancement for transverse mode control.

A block diagram of the physical arrangement for mode enhancement is
shown in Figure 9. The control laser is operated in the desired transverse
mode, The radiation out of the control laser is directed through an optical
isolator and mode matching optics into the output laser. Both of the lasers are
oscillators; hence, the isolator is necessary toassure that the control laser
operates on the output laser and not vice versa. The mode matching optics
transform the mode structure of the control laser to that of the output laser.
It should be noted that the two oscillators must be operated within the same

laser line.

1Johnston, W. D., Jr., Tingye Li, and P, W, Smith, Journal of
Quantum Electronics, Volume QE-4, pp. 469-471 (1968).
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Figure 9. Block Diagram of Mode Enhancement System

The numerical model used to represent this physical system is an

idealization of the actual physical processes involved. First a given resonator

is described by the resonator equations; this represents the output oscillator.

Two modes of this resonator are then determined, the dominant mode and a
higher loss mode. The field configuration of the higher loss mode is used as
the input from the control laser. The model was used to determine the system
constraints required to force the output resonator to oscillate in the kigher loss
mode.
.~ i To understand the model, the iterating process described ia the pre-
ceding chapter needs to be briefly reviewed. The iteration process represents
a wave traveling back and forth in the resonator. At each mirror the wave
experiences both diffracticn and transmission losses. On each iteration the
field is normalized to a magnitude of one; therefore, the normalization repre-
sents a constant gain, If the initial field is composed of many modes, then
after many passes through the resonator the mode having the least loss
dominates,

The enhancement model differs only slightly from this iteration pro-
cess. The difference is that each time the field is on the input mirror an
input field is added to the resonator field, and the summed field is then used as

the source field in the iteration process. This input field represents the

67

P

el o e e

BRI i




radiation from the control oscillator and it has the field configuration of a
mode of the output resonator. Thus, the input field~ can be vicwed as a selec-
tive gain mechanism; it continually adds a pure mode to the fieid within the
output resonator. If this increase in gain more than makes up for the greater
resonator losses, the input field will become dominant,

The processes involved in the numerical model are as follows:

(1) The dominant mode of the output resonaior is determined. It is
designated the TEan mcde; its normalized field on the input
mirror is given by [ﬁns (rs)] ]

(2) One of the higher loss modes of the output resonator is determined.
It is designated the TEMmc mode; its normalized ficld is given by
[ﬁnc (rs)] . This field is used as the source field from the control
resonator, To allow for changes in magnitude of the input, it is
assumed that the control field transmitted into the output resonator
is given by [Tsﬁnc (rs)], where Ts is a real ncnnegative constant.

(3) An initial distribution ie assumed in the output resonator; to this

is added the input from the control resonator, [T R (r )] g
s nc\ s8/]
3 (4) The following iterative procedure is then used:
L (a) The field resulting from a double pass through the resonator is
calculated.
: (b) This field is phase normalized and [T R (r )] is added.
8 ne\'s

(¢) This summed field i® normalized to a peak magnitude of one.

(d) From step (c) go to step (a). This procedure is continued
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until the normalized field in the output resonator converges to
a fixed value.
The field on the input mirror is designated as [Pns(rs)]. As was done
in Chapter IV, the field on the output mirror, [an (rz)] , can be related to this

field by

[an(rz)] = 4] [ﬁm (rs)] : (V-1)
and the field reflected back to the input mir;'or, in terms of the field on the
output mirror, is given by

[Rns (rs)] N [Az] [ﬁnz (rz)} s (V-2)
The terms [As] and [Az] are the single pass resonator matrices defined by
equations (IV-9) and (IV-10). The bars over the fields represent the usval
normalizations obtained by dividing the fields by their value at maximum
magnituce,

The field on the input mirror is obtained by adding the field transmitted
from the control resonator to the phase normalized reflected field. This
phase normalization is necessary as the resonator equations do not preserve

the absolute phaue of the fields. The field on the input mirror is given by
[Pns (rs)] = [TsRcs (rs)] * |Vnsynz |[Rns (rs)] ’ e
The terms yns and ynz are the complex constants obtained in normalizing

[Rns (rs)j and [an (rz)]respectively. As shown by the resonator equations, if

[I_Dns (rs)- represents a field on the input mirror, the field after a double pass is

given by PAZ],[AS] times [l_)ns (rs)]. From equations (V-1) and (V-2) it can

L

be shown that
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[2.] [4] [Pas(2)] = Yas Yozt Pus(7s)]
Therefore, comparing this to the second term on the right-hand side of
equation (V-3) the effect of the phase normalization is apparent; the phase
normalization allows the system to reach a steady state where the two compo-
nents of the field on the input mirror have a fixed relationship.

Equations (V-1), (V-2), and (V-3) represent the characieristics of
the mode enhancement system, These equations relate the fields at the
mirrors of the output resonator in terms of the resonator characteristics and
the input field from the control resonator. The equations were programmed
for use on an IBM 7094 computer in the iterative format given above. The
resulting computer model represents an oscillating resonator being injected
with a constant field from another resonator. The model was set up so that
the initial field, resonator charac:.eristics, and the rate that the input signal
was injected into the resonator could be varied.

Before some of the results obtained with model are presented, a
simplified steaq; -state analysis will be given,

First, it will be assumed that a steady- state exists; by this it is meant
that the normalized resonator field repeats itself after a double pass through
the resonator. Since the model is linear it is reasonable to expect that the
steady-state field is a linear combination of the input field and the normally
dominant resonator field. Thus, the normalized, steady-state field on the

input mirror can be expressed as
I_)ns (rs) - anﬁns (rs) ¥ acﬁnc(rs) ’ (ed)
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where a_and a are complex constants, and where R (r ) is the normally

n c ns\ s :
dominant field of the resonator and ﬁnc (rs) is the input field from the control
resonator. Both fields are pure modes; therefore, a double pass through the
resonator is equivalent to multiplying the fields by their eigenvalues. Thus,
aiter a double pass through the resonator the field is given by

anranS(rs) + acl cRnc(rs) ? (V-5)
where I‘n and I‘c are the eigenvalues of Rns(rs) and Rnc(rs), respectively.

To satisfy the condition of a fixed phase relation between the input field
and the resonator field the phase is normalized. This is accomplished by
multiplying (V~5) by (1A |/A), where A is the value of (V~5) where its magni-
tude is maximum, The resultis

1A
5 [a r R r + a I‘c nc( s)] (V-6)

This represents the phase normalized form of l-jns (rs) after a double pass

through the resonator. To this field is added the input field, Tsﬁnc (rs), gnd

[IAla rn] B_(c.)+ [IAIacI“;: T A] B e -

Gain is expressed by normalizing (V-7) so that the peak field has a

ir obtained.

magnitude of one. This is done by dividing (V-7) by B, where B is the value of
(V-7) where its magnitude is maximum, By assumption, steady conditicns
exist; therefore, after this last normalization the field is identical to the initial

field. Thus,
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_ I!‘xlanl‘n 1 IA!acl‘c + TsA = :
Pns(rs) - AB Rns(rs) * AB Rnc(rs) - (V=8)

Equating coefficients of the fields in equations (V-4) and (V-8) results

in
Y
B= a I‘n (V=9)
and
TsA
a (V-10)

c AB- AT °
C

Substituting (V-9) into (V-10) and taking the absolute value of the result gives

TS
|ac| = T -1 " (V-11)
n C

From this it can be seen that the magnitude of the TEMmc field is proportional
to the rate it is being introduced into the resonator and inversely proportional
to the difference between the eigenvalues of the TE Mmc and the TEMmn modes.
Although this result is intuitively satisfying, in that one would expect the por-
tion of the TEMmc mode present to be related to the rate it is being supplied to
the resonator, it is difficult to obtain usable results from this approach.

It is more instructive to determine the requirements on the system for
maintaining a TEMmc mode once this mode has been established. To do this

one assumes that the field on the input mirror is given by

ISns (rs) - AI—lns(rs) N ﬁnc(rs) i (vV-12)

where

Al « IT | .
c




In a double pass through the resonator the field becomes
AI‘ans(rs) + rcRnc (rs) 5 (V-13)
By normalizing the phase one obtains, approximately,
II‘c IAI‘n
———|R R . -14
rc Rns (rs) + II‘c anc(rs) (V-14)
To this is added the input field, T R (r ), and
s nc\ s

'T_|ar
c _n

5 R () * [_lrcl ¥ Ts]ﬁnc(rs) (V-15)
is obtained.

Normalizing the field to a peak magnitude of one gives, approximately,

ns(rs) + ﬁnc(rs) ; (V-16)

This term represents the field given by (V-12) after one complete iteration of
the model.

A sufficient condition for the continued dominance of the 'I‘EMmc mode
is that with each iteration the TEan mode decreases in magnitude. This
means that the coefficient of ﬁns (rs) decreases in magnitude with each itera-
tion; therefore, by comparing the coefficients of ﬁns (rs) as given by (V-12)

and (V-16) one obtains the resulting requirement on Ts that
- . -1
Ts > IFnl II‘cl (V-17)

Thus, if the 'I‘EMmc mode dominates, then its dominance will be maintained if

the condition in (V-17) holds, It should be noted that the normally dominant
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mode of the resonator is the TEMmll mode; therefore,

IT I =1 >0,
n c

Further insight into the operation of this mode control laser system can
be had by considering mode losses. As has been pointed out previcusly, for a
given mode to dominate it must expevrience the least loss in the system. The
TEan mode is the dominant mode of the output resonator when there is no
input from the control resonator. In a round trip through the resonator this
mode has a power loss given by [1 - II‘n lz]. The TEMmc mede in the output
resonator, under the same condition cf no input from the 'control resonator, has
a power loss given by [1 - II‘c Iz].

Suppose now that the field structure in the output resonator is com-

posed of the TEM _ and TEM modes and that a TEM  mode trom the
mn m me

~
(%

control laser is introduced into the resonator. The round trip pcwer loss of
the TEMmn mode remains the same; however, because of the input field the
round trip power loss of the TEMmc mode decreases, Therefore, if one

assumes that the input signal directly decreases the power loss of the TEMmc

mode, the TEM ; mode will dominate if the condition exists that
m
_ 2 _ 2 - 2 _
[1 Ir_| TS]< [1 Ir_| ] . (V-18)
This inequality simply states that for the TEMmc mode to dominate, the power

loss of this mode must be iess than the power loss of the TEMmn mode.

Solving (V-18) for T one cobtains

2 _ A/ .
T, > [lrnl Il‘cl] ) (V-19)
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By comparing (V-17) and (V-19) one can show that the T8 gliven here is
greater than that required for mode maintenance. This follows directly from
the fact that since

II‘nI > T c I

72
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IT I - Tl < [Il‘nl lr‘cl] ) (V-20)

There are now two basic results pertaining toc the mode control system.
In (V-17) there is a requirement on T8 for mode maintenance, and in (V-19)
there is a requirement on T8 for mode switching. Several tests were made on
the numerical model of the mode control system to check these results; in all
cases the computational results agreed with those specified in (V-17) and
(V-19).

One of the first tests was to check the requirement for mode main-
tenance. Utilizing the techniques described in Chapter IV the normally
dominant mode and a higher loss mode of a self-focusing resonator were deter-
mined. The higher loss mode was used as the control field, ﬁnc(rc), and a
slightly perturbed ﬁnc(rc) was used as the initial field within the resonator.
Witha T_slightly greater than the minimum, [I r |- It I], it was found
that the field witihin the resonator remained ﬁnc (rs) . For cases where Ts
was less than the minimum, the final field converged to configurations other
than ﬁnc (rs) .

In the next test of the model, the same resonator and the same input
field were used, but the initial field was chosen so that it contained a large

component of the normally dominant field, ﬁns (rs). It was found that the
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condition on Ts for mode maintenance was not sufficient to cause the field to
converge to the 'I‘EMmc mode. That is, witha 'I‘s slightly greater than
[ll‘nl - lI‘c l], the field would not converge to the TEMmc mode.

In general it was found that if the initial field had a large component of
ﬁns (rs), then Ts had to be considerably larger than [Il‘nl - II‘c I] before the
field would converge to the TEMmc mode. In fact, for all these cases it was
found that only if TS were greater thanl/that dictated by the power loss require-
ments (that is, TS > [I‘nl2 - II‘c |z] 2) would the field converge to the
TEMmc mode.

For an example, some of the results obtained for a particular case are
presented below, The output resonator had a Fresnel number of one. It was
formed by plane circular mirrors. The input mirror had a constant refiectivity.
The output mirror was a zoned mirror having thirteen half period zones.

Seven of the zones were completely i ~ansmitting, and the remaining six zones
were completely reflecting. The eigenvalue of the TEan mode had a magni-
tude of (9.351), and the eigenvalue of the TEMmc mode had a magnitude of
(G.126). The initial field distribution had a strong ﬁns (rs) component, The
final fields ohtained for different values of TS are shown in Figures 10 and 11
as a function of the normalized mirror radius; the field magnitudes are shown
in Figure 10 and the corresponding phases are shown in Figure 11, When Ts
was zero, the condition of no input signal existed and the field converged to

its normally dominant mode. When TS had the value (0. 4), the condition

/2

T > [lr 12 - T 42]‘
S n [¢]




FIELD AMPLITUDE ON INPUT MIRROR
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Figure 10. Field Amplitude on Input Mirror for Various Values of Ts
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PHASE OF FIELD ON INPUT MIRROR
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Figure 11. Phase of Field on Input Mirror for Various Values of Ts
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existed, and as expected the ﬁeld converged to the TEMmc mode. This means

that there was enough input to switch the resonator field from the TEan mode.
For Ts equal to (0.2) or (0.3) there was not sufficient input to cause the modes
to switch, and the fields converged to mixed modes.

This same resonator was examined for the condition of the initial field
being almost a pure TEMmc mode. It was found that the field would remain
TEMmc if Ts obeyed the inequality expressed in (V-17).

The results of the analysis of the mode enhancement model indicate
that the mode enhancement technique could be used for transverse mode con-
trol. In using this technique one should make use of the finding that less input
signal is required for mode maintenance than is required to switch modes. In
a practiczl sense, this means that the ccatrol oscillator should be activated
before the output oscillator; this would assure that the initial field had the

desired configuration,
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CHAPTER VI

ANALYSIS OF THE SELF-FOCUSING RESONATOR

The basic self-focusing resonator is formed by flat, circular mirrors
having equal radii. One of the mirrors has a uniform reflectivity of unity, it
is designated as the input mirror. The other mirror is a zoned mirror, it is
designated as the output mirror. The characteristics of this zoned resonator
are established by the Fresnel number of the resonator and the configuration
of the zoned mirror,

The zoned mirror is usually composed of alternately reflecting and
transmitting zones of equal area. The reflecting zones have a reflectivity of
unity. The transmission zones are assumed to have no absorption losses, but
they may be partially reflecting. For some cases considered, the total number
of zones and the number of transmission zones relative to the number of
reflection zones have been varied. The areas of hoth the reflecting and trans-
mitting zones are usually fixed so that they correspond to half-period zones;
however, some cases hare been considered in which the area of the zones was
different from this.

The method used in analyzing a given resonator was first to calculate
the resonator mode structure. This was accomplished by using the numerical

techniques discussed in Chapter IV. This gives the fields on both mirrors in
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terms of relative amplitudes and phases, as well as the eigenvalue of the mode
obtained. From this eigenvalue the double pass power loss and double pass
phase shift are directly obtainable. The next step was to utilize the transmis-
sion characteristics of the zoned mirror and the resonator field on the output
mirror to specify the transmitted field. This transmitted field was used as a
source field and the exterior fields were then calculated. Tiese exterior fields
included the power transmitted through the zoned mirror, the field along the
resonator axis, and the field in the focal plane. The equations describing these
fields are given in Chapter II. They were evcluated by using straightforward
numerical integration techniques. A numerical sampling density of 100 points
across the resonator mirrors was generally used; however, for some of the
resonator configurations analyzed, higher sampling densities were required.
As was mentioned in Chapter IV, the sampling densities were such that the
resonator modes \;rere obtained to within an accuracy of about 1 percent. The
same sampling densities as those used to determine the resonator modes were
used in calculating the exterior fields.

In the following sections of this chapter the results of the analysis of

the self-focusing resonator are presanted.

A, A Zoned Resonator

As a means of illustrating some of the basic characteristics of the
self-focusing resonator, the analysis of a specific zoned resonator is presented
in this section, The Fresnel number of this resonator was eighteen, and

the output mirror was composed of thirteen half-period zones. Six of the zones
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were completely refiecting, and the remaining seven were 50 percent reflecting
and 50 percent transmitting, The partially transmitting zones provided the
output coupling from the resonator, and this output field established the focused
field, The transmissivity of the input mirror was uniform and had a value of
one,

In order to provide a base reference for this zoned resonator, a resona-
tor having the same Fresnel number but unzoned mirrors was also analyzed.
This unzoned resonator represenuts the usual resonator configuration where
both mirrors have uniform reflectivities.

The TEMy, mode structure of the unzoned resonator is shown in
Figures 12 and 13. The amplitude oi the field is given in Figure 12 and the
phase is given in Figure 13. The amplitude of the field is given on a relative
basis such that the maximum magnitude is unity, and the phase is normalized
so that the phase at the center of the mirror is zero. The radius is also given
in a normalized form; it is obtained by dividing the actual radius by the maxi-
mum radius of the mirror. The TEM,, mode is symmetrical about the resona-
tor axis; therefore, the field is completely specified by describing the field on
a single radius. Since the mirrors are identical, the normalized fields on the
two mirrors of the resonator are also identical.

The round-trip power loss for this TEM;, mode was found to be 0, 7 per-
cent, This, of course, is for mirrors having reflectivities of unity. Thus,
this loss represents the diffraction loss of the resonator; it is a measure of the
radiation lost over the edges of the mirrors by a wave making a double pass
through the resonator,
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Number = 18, Unzoned Resonator
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Although the amplitude of the field has a distribution that is quite far
from uniform, the phase variation is small, changing only by about 55 degrees
from the center to the edge of the mirror. Most of this phase variation occurs
at the edge of the mirrors. Thus, since the amplitude is small at the outer
edge of the mirrors, the phase variation should have little effect on a trans-
mitted field. That is, if one of the mirrors were made partially transmitting,
the transmitted field would be almost the same as that obtained by a field having
the same amplitude distribution but a constant phase. Therefore, if one of the
resonator mirrors cculd be replaced by a zoned mirror, without distributing
the resonator field structure, one would expect some focusing of the output
radiation., The problem is, of course, that when the mirror is changed, the
resonator mode configuration is also changed. This new field structure may or
may not be capable of producing a focused output.

All the resonators examined in this study exhibited the characteristic
that the field of the unzoned resonator was more regular than the corresponding
field of the zoned resonator. This leads one to the point of view of considering
the field structure of the unzoned resonator as a standard and the fields of the
zoned resonators as perturbations of this standard.

The field configuration of the TEM;; mode for the zoned resonator is
shown in Figures 14 through 17. The field representing this mode on the
output mirror is given as an amplitude and phase in Figures 14 and 15
respectively. The corresponding field on the input mirror is shown in

Figures 16 and 17. Because the resonator mirrors are not identical the
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resonator is unsymmetrical. This accounts for the differant field configura-
ticr:s on ihe two mirrors. It is of interest to note that the field on the output
mirror is more regular than the field on the input mirror; this is a general
characteristic of the mode patterns in zoned resonators. An examination of
the resonater equations makes this readily apparent. The source for the field
on one mirror ie the field on the other mirror multiplied by the amplitude
veflectivity of that mirror. Thus, because of the zones on the zoned mirror,
the source for the field on the output mirror is smoother than the source for
the field on the input mirror.
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